Modification of short scale-length tearing modes by the Hall field
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The calculation of the growth rate of tearing modes is extended to short scale lengths by
including the Hall field. A unified dispersion relation is found that describes usual tearing modes
at one limit and the Hall tearing modes with the enhanced growth rate at the opposite limit. The
dispersion relation is valid for both collisional and collisionless plasmas.

1. INTRODUCTION

Recently there have been extensive studies of processes
that occur on scale lengths between the electron and the
ion skin depths and on the time scale between the electron
and the ion cyclotron periods. The limit of immobile ions
and mobile elecirons only is called electron magneto-
hydrodynamics (EMHD).! The magnetic field evolution is
governed by the Hall field. Within this approximation the
magnetic field was shown to penetrate the plasma due to
nonuniformities,>™ or as a whistler wave.>® Such magnetic
field penetration occurs in plasma opening switches (POS)
and in plasma beams. The dominance of electron dynamics
was demonstrated for short time scales in space plasmas’
and in laser-produced plasmas.®'°

In this paper we examine the modification of tearing
modes by the Hall field for short scale lengths. This mod-
ification was first studied by Gordeev,!! who neglected the
ion dynamics, and assumed hot collisional electrons. Has-
sam studied the modification in the collisional regime, al-
lowing ion motion.!? Recently, Seyler'® used two fluid
models to study plasma stability in the lower-hybrid fre-
quency range. The plasma was assumed cold and collision-
less. This stability problem was studied recently also by
Bulanov et al.**

Our approach is similar to Seyler’s. However, instead
of a numerical solution of the full nonlinear equations, we
study analytically the linear stability problem. We derive a
unified relation that describes usual tearing modes at one
limit and the EMHD modes at the opposite limit. The
plasma pressure is neglected. The dispersion relation is
valid for both collisional and collisionless plasmas.

In Sec. Il we derive the general dispersion relation.
The collisional case is examined in Sec. III and the colli-
sionless case in Sec. IV. In both cases the instability is
enhanced by the Hall field.

Il. DERIVATION OF THE DISPERSION RELATION
The governing equations are the continuity equation,
on
at

the momentum equation,

+V-nu=0, (1)
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du
——l—uovu: JXB, (2)

at Mnc

the generalized Ohm’s law,

E uXB JXB md J J 1 3
T T ene e (at—en )(en)+n ’ (3)
Ampére’s law,

4

—;IJ=V><B, (4)
and Faraday’s law,

13B
_E—§=VXE' (5)

In these equations n is the plasma density (quasineutrality
is assumed), M and u are the ion mass and flow velocity, J
is the current, 77 is the resistivity, E and B are the electric
and the magnetic fields, m is the electron mass, e is the
elementary charge, and ¢ is the velocity of light in vacuum.
We assumed that the electron and ion pressures are negli-
gible in Ohm’s law and in the momentum equation. We
also neglected the displacement current in Ampére’s law
and the derivatives of the ion velocities in Ohm’s law.
These equations with zero resistivity were also the basis for
Seyler’s analysis.'

We are interested in the stability of a current layer
parallel to an external magnetic field. We could aliow small
but finite parallel wave numbers and use a reduced form of
the equations similar to reduced magnetohydrodynamics
(MHD).” For simplicity, however, the parallel wave
number is assumed zero, d/dz=0. We write the dimension-
less magnetic field b and flow velocity n as

b=2XVW¥+2(148b),

u=2XVé+Vy-+ui. (6)
The magnetic field b is normalized to the external magnetic
field By, and u and v are normalized to u,=cw/w,;,
where w,=e¢By/Mc and a};[E 4urnge’/M, ngy is the assumed
uniform equilibrium density. The length is normalized to
¢/w,;. This set of equations is a simplified version of Hall
MHD.!6!%7 We examine the stability of a current layer for
which the magnetic field is of the form
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da¥y(x)
pgxg o) L, 7
dx

where d¥,/0x= —eF (x) and e€1. We write the equations
for the linearized quantities, -

V=W (x)+¥;(x)exp(yr+iky),
8b="b,(x)exp(yT+iky),

n=1+n,, (8)
x=x1(x)exp(yr+iky),

¢=¢1(x)exp(yr+iky).

We use dimensionless time 7(=w, f) and density
n(=n/ny). The governing equations (1)—(5) become

[y—-(762+V)V2]\I/=6F%—ikquH—iker, (9)

[y— (82 +v)V*1b= — Vv +ike(—F" + FV*)V¥

+ike’FF'n, (10)
y V= —ike(—F" +FV*)Y¥, (11)
x=—>b, (12)
yn+V2y =0, (13)

where the normalized resistivity is v=mnngec/B;, and
8*=m/M.

If y and b are small these equations take the form of
the standard tearing mode problem.® If, however, y and ¢
are small, the equations become the EMHD equations for
tearing modes that include electron dynamics only.'* We
would like to examine the general solution of these equa-
tions and to examine the transition between the two oppo-
site limits.

Using Egs. (12) and (13) we can eliminate # and y.
Equations (9)—(11) become

52+ v) V¥ = Fl% ik(d+b 14
[y~ (6 +v)V ¥ = —€ (73x+z (+ )), (14)
[ (62 ! ikezFF')vz]b ike(—F" +FV2)¥
f— —_— p— €l — ,
Y—\7 +V+7/ ——1—/’;“ +
(15)
¥ V%= —ike(—F" +FV?)W. (16)

The first term on the right-hand side (rhs) of Eq. (14) and
the last term on the left-hand side (lhs) of Eq. (15) result
from the change of density due to the magnetic pressure.
These two terms change the structure of the equations in
the layer. For simplicity in the present study we restrict
ourselves to cases in which we may neglect these terms. We
therefore require that

Ilab

~ 3| <Elo+ol, (17)

and that
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5 1| |k€’FF’
|ly&+v+=[>|—5—]. (18)
[ 4 Y
Thus, the governing equations become
[y— (v8+v)V ¥ = —ieFk($+b), (19)
1
[y—— (‘y82+v+;)V2]b=ike( —F"+FVH)V, (20)
y V%= —ike(—F" +FV)W. (21)

These equations have a standard tearing mode form.
The exterior solution satisfies the equations

(—F"+FV*)¥=0, (22)

YV = —ikeF (¢+b). (23)
We assume that

F=tanh(x/I}, (24)
and therefore

W(x)=exp(xkx)[1xtanh(x/I)/kl]. (25)
Following (18) and (24) we require that

V6 +vy+ 1 <ke?/yl. (26)
We also define the jump, in the derivative,

A=W (0F) —W'(07) =2[ (1/kP) —k]. 27

The equations inside the tearing layer are approximated as

Y¥(0) — (v8*+v)¥" = —ike(x/1) ($+b), (28)
— (Y82 + v+ 1/7)b" =ike(x/1)P", (29)
y@" = —ike(x/1)P". 30)
These equations are combined to
2
Z?gz-ézg=§, (31
where
il(y8*+v)
=%
293/4
x [(7/62+(vv:—r 11//7:/)2:3)2%)7 (?) ] R
and
E=x/x,. (33).
The width of the tearing layer is
(P& +v+ ) (& +v)y ( 1\
= [ V17 +7) (E) (34)
The condition (17) now becomes
" |b| <kyx,|$+b|. (35)

Matching the external solution with the internal solution,
we obtain the general dispersion relation:
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FIG. 1. The growth rate y versus the parameter p (both on the logarith-
mic scale) in the collisional case. Curve 1 shows the MHD growth rate
[Eq. (43)], curve 2 the transition regime [Eq. (46)] and curve 3 the
EMHD regime [Eq. (49)]. On the In(p) axis a denotes where p=1/v*"*
and b denotes p=1/v""% The solid curve is the solution of the dispersion
relation (41). On the In y axis @ denotes where y=1 and b where y=1/v.
In the figure v=0.02.

(Y&+v+1/my 36)
"((v+1/7+7)(762+v)3) =P (
where
Ar kE 172
PET (T) ;
(37)

I=aT(3)/TG).

Since v and 87 are much smaller than unity, we may now
write (35) as

( +1)( 524 )kA'>1 (38)
- vy ——= .
4 4 4 v I

In the following we discuss separately the collisional
and the collisionless cases.
IN. THE COLLISIONAL CASE
The collisional case is characterized by
v> Y8~ (39)

We require that the growth rate will be larger than the rate
of diffusion,

yPs>v. (40)
Following (39), the dispersion relation (36) becomes
(vy+1) 4
— =p.
”((v+1/y+y)v ) P (41)

Figure 1 shows the growth rate ¥ as a function of p.
For

p<I/vYe, (42)
the growth rate is
7/=p4/5V3/5. (43)
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This is the standard tearing mode problem. From (42) and
(43) we obtain that

y<l.

The growth time is longer than the ion cyclotron period.
This is the regime that ¢>b.
In the intermediate regime,

(44)

1/ <p<1/v¥?, (45)
the growth rate is

y=p*". (46)
In this regime,

1Ly<1/v. (47)

This is an intermediate regime. The Hall field and ion dy-
namics are both important. The field b is determined by the
ion compression.

The third domain is the EMHD domain. If

p>1/v¥72, )
the growth rate becomes! 124

y=pv'"% )
In this regime,

> 1/v. 50)

The solid curve in Fig. 1 shows the solution of Eq.
(41). The dotted curves denoted 1, 2, and 3 are the curves
of (43), (46), and (49), respectively. To the left of a
(where p= 1/v*/*) the solid line coincides with curve 1.
Between ¢ and b (where p=1/v3/ 2, the solid line coin-
cides with curve 2. To the right of b, the solid line coincides
with curve 3.

In the collisional case, condition (38) becomes

kA!

T>P8/5Vl/5’

(51a)

for y«1, and

kAT 1 sib

for y» 1.
For all three domains to be possible (39) has to be
satisfied,

p<vi’t/8t, (52)
or for the domain (48) to exist,
1 ,‘,1/2
FAEHT (53)
or
v> 8. (54)

The collision frequency has to be larger than the lower-
hybrid cyclotron frequency. This is a common condition
for the existence of resistive EMHD. !
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FIG. 2. The growth rate ¥ (on the logarithmic scale) versus the param-
eter p in the collisionless case. Curve 1 shows the MHD growth rate [Eq.
(59)], while curve 2 shows the EMHD growth rate [Bq. (61)]. The solid
curve shows the curve (57). On the p axis a denotes p= 1/8*2. In the
figure §*=1g15.

IV. THE COLLISIONLESS CASE
We turn now to the collisionless case and assume that
v€y8i. (55)

The dispersion relation becomes a second-order polyno-
mial for 72,

&+1)y
s e

The solution for the growth rate is

456 2 172

A Al e

Figure 2 shows ¥ vs p. For

p<€1/8 (58)
the growth rate is approximately

y=p"6". (59)
For

p>1/8%2, (60)
the growth rate becomes

Y=p"8" (61)

The expression (61) represents the increase in the growth
rate in the EMHD regime relative to the usual MHD re-
gime (59).

Curves 1 and 2 in Fig. 2 show (59) and (61), respec-
tively. The solid curve shows (57). To the left of @ (where
p= 1/8°?) the solid line coincides with curve 1, while to
the right of a it coincides with curve 2.

In the collisionless case condition (38) becomes

kAT

—3%pb, (62a)

I
for y«1, and
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kA ! 62b
7 >W ) (62b)
for y>»1.
In order to have the full collisionless regime, we re-
quire that (55) is satisfied; therefore

12940 L (63)

since p?6°«¢1. Combining (54) and (63) we see that the
collisional regime is the regime where v»8, while the col-
lisionless regime is for v<5°. The collision frequency has to
be smaller than the ion cyclotron frequency.

V. CONCLUSIONS

We summarize this paper by presenting the main re-
sults in dimensional form. Let us start with the collisional
case. We define, as is done commonly,

_(4aMn)'?  4al ”
TWETkB, ™oy (o)

where B,=¢€B; and all quantities are in dimensional form.
We also define the Hall time,

= (&) (%) (%)

The Hall time is equivalent to the resistive time with the
Hall “resistivity” (B,/2nec), and the length Qwl/k)V2
Note that 73 <7, when /<c/w,. The growth rate in the
usual MHD regime (43) is

(65)

AO 4/5
y= (7) 2 P (66)

In the second regime (46), the growth rate is
A, 473
r= (7) 2R el (67)

where 7,=(Mc/eB;). In the EMHD regime the growth
rate (49) becomes

Ao\ 1y
y= (_I_) V12,

Here Ay=(1/kl—kl).
We turn now to the collisionless case. In the collision-
less MHD the growth rate (59), is

() () )
= | = T — ,

14 I]'A lw,,

where @, is the electron plasma frequency. In the EMHD
regime (61), the growth rate is

AO 2 _14 [ 2
r= (T> H 7T(l“’pe) .

We note that in the EMHD regime, whether collisional
(68) or collisionless (70), the growth rate is independent
of the ion mass.

(68)

(70)
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