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The calculation of the growth rate of tearing modes is extended to short scale lengths by 
including the Hall field. A unified dispersion relation is found that describes usual tearing modes 
at one limit and the Hall tearing modes with the enhanced growth rate at the opposite limit. The 
dispersion relation is valid for both collisional and collisionless plasmas. 

I. INTRODUCTION 

Recently there have been extensive studies of processes 
that occur on scale lengths between the electron and the 
ion skin depths and on the time scale between the electron 
and the ion cyclotron periods. The limit of immobile ions 
and mobile electrons only is called electron magneto- 
hydrodynamics (EMHD). * The magnetic field evolution is 
governed by the Hall field. Within this approximation the 
magnetic field was shown to penetrate the plasma due to 
nonuniformities,2~ or as a whistler wave.5p6 Such magnetic 
field penetration occurs in plasma opening switches ( POS ) 
and in plasma beams. The dominance of electron dynamics 
was demonstrated for short time scales in space plasmas’ 
and in laser-produced plasmas.‘-to 

In this paper we examine the modification of tearing 
modes by the Hall field for short scale lengths. This mod- 
ification was first studied by Gordeev,” who neglected the 
ion dynamics, and assumed hot collisional electrons. Has- 
sam studied the modification in the collisional regime, al- 
lowing ion motion.12 Recently, Seyler’j used two fluid 
models to study plasma stability in the lower-hybrid fre- 
quency range. The plasma was assumed cold and collision- 
less. This stability problem was studied recently also by 
Bulanov et al. l4 

Our approach is similar to Seyler’s. However, instead 
of a numerical solution of the full nonlinear equations, we 
study analytically the linear stability problem. We derive a 
unified relation that describes usual tearing modes at one 
limit and the EMHD modes at the opposite limit. The 
plasma pressure is neglected. The dispersion relation is 
valid for both collisional and collisionless plasmas. 

In Sec. II we derive the general dispersion relation. 
The collisional case is examined in Sec. III and the colli- 
sionless case in Sec. IV. In both cases the instability is 
enhanced by the Hall held. 

II. DERIVATION OF THE DISPERSION RELATION 

The governing equations are the continuity equation, 

an 
z+V*nu=O, 

the momentum equation, 

au at+u*vu=$-&JxB, 

the generalized Ohm’s law, 

E+ c =dg+~($-; l v)(-$+qJ, 
Amp&e’s law, 

4n 
c J=VXB, 

and Faraday’s law, 

(2) 

(3) 

(5) 

In these equations n is the plasma density (quasineutrality 
is assumed), M and u are the ion mass and flow velocity, J 
is the current, 7 is the resistivity, E and I3 are the electric 
and the magnetic fields, m is the electron mass, e is the 
elementary charge, and c is the velocity of light in vacuum. 
We assumed that the electron and ion pressures are negli- 
gible in Ohm’s law and in the momentum equation. We 
also neglected the displacement current in Ampere’s law 
and the derivatives of the ion velocities in Ohm’s law. 
These equations with zero resistivity were also the basis for 
Seyler’s analysis. l3 

We are interested in the stability of a current layer 
parallel to an external magnetic field. We could allow small 
but finite parallel wave numbers and use a reduced form of 
the equations similar to reduced magnetohydrodynamics 
(MHD).” For simplicity, however, the parallel wave 
number is assumed zero, a/&=0. We write the dimension- 
less magnetic field b and flow velocity u as 

b=%VY +;( 1 -f-&b), 

u=z”XV~+V~+v2. (61 

The magnetic field b is normalized to the external magnetic 
field B0 , and u and u are normalized to aA=c@,L/a+ 
where O,iEeB&kfc and ~~i~417-noe2/M, no is the assumed 
uniform equilibrium den&y. The length is normalized to 
c/w,~ This set of equations is a simplified version of Hall 
MHD.‘“‘rl’ We examine the stability of a current layer for 
which the magnetic field is of the form 
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b=z^XR 
aydx) 

ax +f (7) 

where &I!&%= --EF(x) and ~(1. We write the equations 
for the linearized quantities, 

Y=%(x) +$(x)exp(y~+iky), 
Sb=bt(x)exp(yr+iky), 

n=l+n*, (8) 

We use dimensionless time r( =w,~$) and density 
n ( = n/no). The governing equations ( 1 )-( 5) become 

[y- (yS2+~)V2]Y=eF %-ikeF$+ikeFb, (9) 

[y- (yS2+~)V2]b= -V2x+ike( -F”+FV’)Y 

+ik2FF’n, (10) 

y V24= -ike( -F”+FV’)Y, (11) 

yx= --b, (12) 

yn+V’X=O, (13) 

where the normalized resistivity is Y=~ncec/Bc, and 
&m/M. 

If x and b are small these equations take the form of 
the standard tearing mode problem.18 If, however, x and 4 
are small, the equations become the EMHD equations for 
tearing modes that include electron dynamics only.14 We 
would like to examine the general solution of these equa- 
tions and to examine the transition between the two oppo- 
site limits. 

Using Eqs. (12) and (13) we can eliminate n and JJ. 
Equations (9)-( 11) become 

[y- (#+Y)V~]Y= --EF ig+ikt#+b)), (14) 

1 ikr?FF’ 
rsz+v+,yT- 1 1 V2 b=ike( -F”+FV2)Y, 

(15) 

y V2q5= -ike( -F”+FV2)Y. (16) 

The first term on the right-hand side (rhs) of E?q. ( 14) and 
the last term on the left-hand side (Ihs) of Eq. (15) result 
from the change of density due to the magnetic pressure. 
These two terms change the structure of the equations in 
the layer. For simplicity in the present study we restrict 
ourselves to cases in which we may neglect these terms. We 
therefore require that 

(17) 

and that 

I yLP+v++l* if+jq (18) 

Thus, the governing equations become 

[y- (yS2+~>V2]Y = -ieFk(c$+b), (19) 

[y- ( y’S’+v+S)Bi]b=ik~~-F”+FV2~Y, (20) 

yV2c$=-~~E(--F”+FV~)Y. (21) 

These equations have a standard tearing mode form. 
The exterior solution satisfies the equations 

(-F”+FV’)Y=O, (22) 

yY= -ikeF(#+b). (23) 

We assume that 

F=tanh(x/l), (24) 

and therefore 

Y(x) =exp( &x) [ 1 itanh(x/Z)/kZ]. (25) 

Following (18) and (24) we require that 

y%2+vy+ 14ke=/yl. (26) 

We also define the jump, in the derivative, 

A’rY’(O+) -Y’(O-) =2[ (l/k& -k]. (27) 

The equations inside the tearing layer are approximated as 

yY(0) - (yS2+v)Y”= -ikcs(x/Z) (c#+b), (28) 

-((“/S2+v+l/y)bN=ik~(x/Z)Y”, (29) 

yf’= -ike(xd (30) 

These equations are combined to 
2 

$-C2g=& (31) 

where 

(v+ l/r+r) kE 2 314 

(y#+v+ l/y) (ya2+v)Y -i ( )I 4 (32) 

and 

c+dx*. 

The width of the tearing layer is 
(33)~ 

1 
(y@+v+l/y)(y~2+v)y I 2 1’4 

x,= 
(v+ l/r+r> ( )I ‘i7; * (34) 

The condition ( 17) now becomes 

Ibl4krxtI++bI. (35) 

Matching the external solution with the internal solution, 
we obtain the general dispersion relation: 
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FIG. 1. The growth rate y versus the parameter p (both on the logarith- 
mic scale) in the collisional case. Curve 1 shows the MHD growth rate 
[Eq. (43)], curve 2 the transition regime [Eq. (46)] and curve 3 the 
EMHD regime [Eq. (49)]. On  the In(p) axis a denotes where p= 1/$‘4 
and b denotes p= l/d’*. The solid curve is the solution of the dispersion 
relation (41). On  the In y axis a denotes where y= 1 and b where y= l/y. 
In the figure ~=0.02. 

( 
ty82+v+ l/y)y 

1 
l/4 

y (v+ l/y+y)(y~2+v)5 =!-% 
where 

(36) 

Since v and S2 are much smaller than unity, we may now 
write (35) as 

( 1 
,+; ( yS2+v) +1. (38) 

In the following we discuss separately the collisional 
and the collisionless cases. 

III. THE COLLISIONAL CASE 

The collisional case is characterized by 
v, ys2. (39) 

We require that the growth rate will be larger than the rate 
of diffusion, 

y&v. (40) 
Following (39)) the dispersion relation (36) becomes 

i 

(vy+l) 

1 

l/4 

y (v+ l/y+y)vf =p* (41) 

Figure 1 shows the growth rate y as a function of p. 
For 

p( l/$/4 , (42) 
the growth rate is 

y=p4&3’5. (43) 

This is the standard tearing mode problem. From (42) and 
(43) we obtain that 

y41. (44) 
The growth time is longer than the ion cyclotron period. 
This is the regime that &b. 

In the intermediate regime, 

1 /$I4 gp Q  1 /v3’2, (45) 
the growth rate is 

y=p4’3v. (46) 
In this regime, 

l(y(l/v. (47) 
This is an intermediate regime. The Hall field and ion dy- 
namics are both important. The field b is determined by the 
ion compression. 

The third domain is the EMHD domain. If 

p $1 /v3’2, 

the growth rate becomes1**12*14 

y=pv’? 

In this regime, 

(48) 

(49) 

y, l/v. (50) 
The solid curve in Fig. 1 shows the solution of Eq. 

(41). The dotted curves denoted 1, 2, and 3 are the curves 
of (43), (46), and (49), respectively. To the left of a 
(where p= l/~?“~) the solid line coincides with curve I. 
Between a and b (where p= l/v3”), the solid line coin- 
cides with curve 2. To the right of b, the solid line coincides 
with curve 3. 

In the collisional case, condition (38) becomes 

(5la) 

for y( 1, and 

kh’ 1 
-p-Y, 

for y*l. 
For all three domains to be possible (39) has to be 

satisfied, 

p 4 v’/2/s2, (52) 
or for the domain (48) to exist, 

1 v1’2 
P”T- (53) 

or 

V)S. (54) 
The collision frequency has to be larger than the lower- 
hybrid cyclotron frequency. This is a common condition 
for the existence of resistive EMHD.19 
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FIG. 2. The  growth rate y (on the logarithmic scale) versus the param- 
eter p  in the collisionless case. Curve 1  shows the MHD growth rate [E$. 
(59)], while curve 2  shows the EMHD growth rate [Eq. (61)]. The  solid 
curve shows the curve (57). On  the p  axis a  denotes p= 1/63’2. In the 
figure 6’=$j. 

IV. THE COLLISIONLESS CASE 

W e  turn now to the collisionless case and assume that 

vg ys2. (55) 
The dispersion relation becomes a  second-order polyno- 
m ial for J, 

m2+ l>f 
(F-t l)S6 =p4* 

The  solution for the growth rate is 

(56) 

Ij=y$p)+[ ~~~1)“+p%f’2. (57) 

F igure 2  shows y vs p. For 

p g 1/63’2, 
the growth rate is approximately 

y=pw 

(58) 

(59) 
For 

p s 1/s3”, (60) 
the growth rate becomes 

y =pw. (61) 
The expression (6 1) represents the increase in the growth 
rate in the EMHD regime relative to the usual MHD re- 
g ime (59). 

Curves 1  and  2  in F ig. 2  show (59) and  (61)) respec- 
tively. The  solid curve shows (57). To  the left of a  (where 
p= l/S3’2) the solid line coincides with curve 1, while to 
the right of a  it coincides with curve 2. 

In the collisionless case condit ion (38) becomes 

(624 

for y< 1, and  

kh’ 1  
-T--m’ (62b) 

for y)l. 
In order to have the full collisionless regime, we re- 

quire that (55) is satisfied; therefore 

Y 4pw ( 62, (63) 

since p2S3#1. Combining (54) and  (63) we see that the 
collisional regime is the regime where Y)S, while the col- 
lisionless regime is for ~(6~. The  collision frequency has to 
be  smaller than the ion cyclotron frequency. 

V. CONCLUSIONS 

W e  summarize this paper  by presenting the ma in re- 
sults in dimensional form. Let us start with the collisional 
case. W e  define, as is done commonly, 

(47TMn)‘” 4?i-P 
7‘4’ kBY ; ‘k=-, (64) 

crl 
where B,,=EB, and all quantities are in dimensional form. 
W e  also define the Hall time, 

(65) 

The Hall time  is equivalent to the resistive time  with the 
Hall “resistivity” ( By/2nec), and the length (2d/k) 1’2. 
Note that TH <TA when l<c/o,, The  growth rate in the 
usual MHD regime (43) is 

Ao ( ) 4/5 
y= -7 ,p,y. 

In the second regime (46), the growth rate is 
4/3 

-2/3 -1p3 
TA rR ci f 

(66) 

(67) 

where rcis (Mc/eB,). In the EMHD regime the growth 
rate (49) becomes 

!68) 

Here A,= (l/kl-kkl). 
W e  turn now to the collisionless case. In the collision- 

less MHD the growth rate (59)) is 

(69) 

where oPe is the electron plasma frequency. In the EMHD 
regime (61), the growth rate is 

y= ( $)2rg1471( &)'. (70) 

W e  note that in the EMHD regime, whether collisional 
(68) or collisionless (70), the growth rate is independent 
of the ion mass. 
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